Optical absorption spectra of Eu^{3+} in $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}(\mathrm{YGG})$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys.: Condens. Matter 91637
(http://iopscience.iop.org/0953-8984/9/7/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.207
The article was downloaded on 14/05/2010 at 08:09

Please note that terms and conditions apply.

Optical absorption spectra of $\mathrm{Eu}^{\mathbf{3 +}}$ in $\mathbf{Y}_{3} \mathbf{G a}_{5} \mathrm{O}_{12}$ (YGG)

K Binnemans \dagger and C Görller-Walrand
K U Leuven, Department of Chemistry, Coordination Chemistry Division, Celestijnenlaan 200F, B-3001 Heverlee, Belgium

Received 12 June 1996, in final form 31 October 1996

Abstract

Optical absorption spectra of trivalent europium in the rare-earth garnet $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}$ (YGG) have been recorded between 4600 and $32000 \mathrm{~cm}^{-1}$ at 77 and at 293 K . A total of 117 crystal-field transitions has been detected in the spectra. The symmetry of the Eu^{3+} site is D_{2}, so a total removal of the crystal-field degeneracy of the $4 f^{6}$ configuration can be expected. The energy level scheme of Eu^{3+} in YGG is parametrized in terms of 20 free-ion parameters and nine crystal-field parameters. The crystal field is strong in the garnet host, so J-mixing has to be taken into account for the crystal-field calculation.

1. Introduction

Rare-earth garnets are interesting materials for solid state lasers [1]. An overview of the spectroscopic properties of trivalent lanthanide ions in rare-earth garnets is given by Morrison and Leavitt [2]. Koningstein [3] has published the energy level scheme of $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}: \mathrm{Eu}^{3+}$ between 0 and $19000 \mathrm{~cm}^{-1}$. He has recorded the fluorescence spectrum in the spectral region from 12000 to $16950 \mathrm{~cm}^{-1}$ and the absorption spectrum between $1900 \mathrm{~cm}^{-1}$ in the infrared and $20000 \mathrm{~cm}^{-1}$ in the visible part of the spectrum.

In this paper, we report the optical absorption spectra of Eu^{3+} in the rare-earth garnet $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}$ (YGG). The measurements span the $4600-32000 \mathrm{~cm}^{-1}$ spectral region. The spectra have been recorded at 293 and at 77 K . The Eu^{3+} ion is attractive from a spectroscopic viewpoint, because of the non-degenerate ground state ${ }^{7} \mathrm{~F}_{0}$ and because of the presence of several ${ }^{2 S+1} L_{J}$ manifolds with a small total angular momentum J. A distinct correlation between structural and spectroscopic properties is therefore possible. The energetic scheme of the $4 f^{6}$ configuration is reconstructed and the energy levels are parametrized in terms of free-ion and crystal-field parameters. The symmetry at the rare-earth site is orthorhombic (D_{2} symmetry). There are six crystallographically, but magnetically inequivalent D_{2} sites per unit cell [4]. The consequence is that one can define six sets of crystal-field parameters which may appear to be completely different, but which give identical crystal-field splittings.

2. Experimental details

The Eu^{3+} doped $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}$ (YGG) single crystal was provided by G Blasse (University of Utrecht, The Netherlands). Approximately 10% of the Y^{3+} in YGG have been replaced
\dagger Send correspondence to Dr K Binnemans, K U Leuven, Department of Chemistry, Coordination Chemistry Division, Celestijnenlaan 200F, B-3001 Heverlee (Leuven), Belgium.

Figure 1. Absorption spectra of the transitions to ${ }^{7} \mathrm{~F}_{6}$ in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ at 293 and at 77 K .
by Eu^{3+}. The YGG:Eu ${ }^{3+}$ crystal is colourless [5]. Absorption spectra were recorded on an AVIV 17DS spectrophotometer. The optics of the instrument are based on those of the Cary 17. It covers the ultraviolet, visible and near-infrared regions (185-2500 nm) with a double monochromator: a 30° fused silica prism and a 600 lines mm^{-1} grating. Resolution in most of the UV-VIS wavelength range is 0.07 nm . In the near infrared the resolution is about 0.3 nm . The wavelength reproducibility is within 0.05 nm in the UV-VIS and 0.25 nm in the near infrared. A spectral bandwidth of 0.05 nm in the visible and 2 nm in the infrared was used. The sample was cooled in a continuous flow cryostat (Oxford Instruments), with liquid nitrogen as refrigerant $(77 \mathrm{~K})$. Data collection is digital and processing is performed by commercial software on a PC.

3. Analysis of the spectra

In the near infrared, transitions to the ${ }^{7} \mathrm{~F}_{6}$ multiplet are found ($4600-5400 \mathrm{~cm}^{-1}$) (figure 1). These transitions are intense, because they are spin allowed $(\Delta S=0)$. The transitions starting from the ${ }^{7} \mathrm{~F}_{1}$ manifold can be observed only partially, because of instrumental restrictions. A peak at $16406 \mathrm{~cm}^{-1}$ in the spectrum at ambient temperature can be assigned to the ${ }^{5} \mathrm{D}_{0} \leftarrow{ }^{7} \mathrm{~F}_{2}$ transition. This is the only transition starting from the ${ }^{7} \mathrm{~F}_{2}$ level in the YGG: Eu^{3+} crystal. Three peaks are found for the ${ }^{5} \mathrm{D}_{0} \leftarrow{ }^{7} \mathrm{~F}_{1}$ transition at 293 K (16820 , 16867 and $16902 \mathrm{~cm}^{-1}$). The total removal of the crystal-field degeneracy of the ${ }^{7} \mathrm{~F}_{1}$ level indicates that the site symmetry in the garnet is orthorhombic or lower (figure 2). As mentioned above, the site has the orthorhombic D_{2} symmetry. The ${ }^{5} \mathrm{D}_{0} \leftarrow^{7} \mathrm{~F}_{0}$ transition is forbidden in a D_{2} symmetry and is indeed not observed in the absorption spectrum of

Figure 2. Absorption spectrum of the ${ }^{5} \mathrm{D}_{0} \leftarrow{ }^{7} \mathrm{~F}_{1}$ transition in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ at 293 K .

Figure 3. Absorption spectrum of the transitions to ${ }^{5} \mathrm{D}_{1}$ in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ at 293 K .

YGG:Eu ${ }^{3+}$. The hypersensitive transition ${ }^{5} \mathrm{D}_{1} \leftarrow^{7} \mathrm{~F}_{1}$ is only weak. Two peaks are resolved well (18567 and $18627 \mathrm{~cm}^{-1}$). Another one is observed as a shoulder at $18611 \mathrm{~cm}^{-1}$ (figure 3). Although three peaks are expected for the ${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{0}$ transition, only two are effectively found in the spectrum: 18954 and $18971 \mathrm{~cm}^{-1}$ (figure 3). Calculations show that the peak at $18954 \mathrm{~cm}^{-1}$ consists in fact of two overlapping peaks. Those two peaks are not resolved in the absorption spectrum. Using the transitions ${ }^{5} \mathrm{D}_{0} \leftarrow^{7} \mathrm{~F}_{1},{ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{1}$ and ${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{0}$, it is possible to determine the energetic positions of the ${ }^{5} \mathrm{D}_{0}$ level and the crystal-field levels of the ${ }^{7} \mathrm{~F}_{1}$ multiplet. Transitions to the ${ }^{5} \mathrm{D}_{2}$ multiplet are found between 21000 and $21500 \mathrm{~cm}^{-1}$ (figure 4). Three peaks are found for the transition ${ }^{5} \mathrm{D}_{2} \leftarrow^{7} \mathrm{~F}_{0}$, in agreement with the predictions for a D_{2} symmetry: at 21362 , at 21448 and at $21471 \mathrm{~cm}^{-1}$. The hypersensitive transition ${ }^{5} \mathrm{D}_{2} \leftarrow^{7} \mathrm{~F}_{0}$ (induced electric dipole transition) is less intense than the magnetic dipole transition ${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{0}$. Five weak transitions in the 293 K spectrum can be assigned to the ${ }^{5} \mathrm{D}_{2} \leftarrow^{7} \mathrm{~F}_{1}$ transition. The next J-level of the ${ }^{5} \mathrm{D}$ term is ${ }^{5} \mathrm{D}_{3}$. In normal circumstances, the ${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$ transition (around $24250 \mathrm{~cm}^{-1}$) is not observed, because this transition $(\Delta J=3)$ is forbidden by the selection rules for induced electric

Figure 4. Absorption spectrum of the transitions to ${ }^{5} \mathrm{D}_{2}$ in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ at 293 K .

Figure 5. Absorption spectra of the transitions to ${ }^{5} \mathrm{D}_{3}$ in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ at 293 and at 77 K .
dipole transitions ($\Delta J=2,4$ and 6 for transitions starting from the ${ }^{7} \mathrm{~F}_{0}$ level). In that case, the crystal-field levels of the ${ }^{5} \mathrm{D}_{3}$ multiplet have to be determined from the ${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{1}$ transition ($\Delta J=2$). In YGG: Eu^{3+}, the ${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$ transition is, however, observed. This is due to the strong J-mixing in the garnet host. J-mixing can relax the selection rule on ΔJ. The intensity of these crystal-field transitions is very low. They are found in the spectral region where also the ${ }^{5} \mathrm{~L}_{6} \leftarrow{ }^{7} \mathrm{~F}_{1}$ transitions can be expected. The latter transitions will disappear when cooling the sample, while the intensity of the ${ }^{5} \mathrm{D}_{3} \leftarrow^{7} \mathrm{~F}_{0}$ transition will

$$
\text { Spectra of } \mathrm{Eu}^{3+} \text { in } Y_{3} G a_{5} O_{12}
$$

increase (depopulation of the ${ }^{7} \mathrm{~F}_{1}$ level in favour of the ${ }^{7} \mathrm{~F}_{0}$ level). Six peaks can be assigned to the ${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$ transition and also six to the ${ }^{5} \mathrm{D}_{3} \leftarrow^{7} \mathrm{~F}_{1}$ transition. In this way, six of the seven crystal-field levels of the ${ }^{5} \mathrm{D}_{3}$ manifold can be located (figure 5).

Transitions to the ${ }^{5} \mathrm{~L}_{6}$ multiplet are the most intense transitions in the visible and ultraviolet part of the Eu^{3+} spectrum. Because of the large splitting of the ${ }^{5} \mathrm{~L}_{6}$ manifold in YGG: Eu^{3+}, the ${ }^{5} \mathrm{~L}_{6} \leftarrow^{7} \mathrm{~F}_{0}$ and ${ }^{5} \mathrm{~L}_{6} \leftarrow^{7} \mathrm{~F}_{1}$ transitions overlap. Separation of the two transitions can be achieved by the fact that only the ${ }^{5} \mathrm{~L}_{6} \leftarrow^{7} \mathrm{~F}_{0}$ transition is observed at 77 K . At this temperature, the rather broad crystal-field transitions of ${ }^{5} \mathrm{~L}_{6} \leftarrow^{7} \mathrm{~F}_{0}$ are better resolved. Nine of the 13 crystal-field levels of the ${ }^{5} \mathrm{~L}_{6}$ manifold have been detected experimentally. The total crystal-field splitting of the manifold is $731 \mathrm{~cm}^{-1}$. The splitting of the ${ }^{5} \mathrm{~L}_{6}$ multiplet is rather strange. The crystal-field levels of the multiplet are divided into two groups and separated by an energy gap of more than $500 \mathrm{~cm}^{-1}$. The lower subgroup of six crystal-field levels is only about $70 \mathrm{~cm}^{-1}$ across, whereas the upper subgroup of seven crystal-field levels is spread over no more than $200 \mathrm{~cm}^{-1}$. This is proved by crystal-field calculations (figure 6).

Between 25500 and $27200 \mathrm{~cm}^{-1}$, transitions to the multiplets ${ }^{5} \mathrm{~L}_{7},{ }^{5} \mathrm{~L}_{8},{ }^{5} \mathrm{G}_{2},{ }^{5} \mathrm{G}_{3}$, ${ }^{5} \mathrm{G}_{4},{ }^{5} \mathrm{G}_{5}$ and ${ }^{5} \mathrm{G}_{6}$ are located. This spectral region is very congested and assignments are only possible by comparing the experimental and calculated crystal-field levels. Transitions starting from the ${ }^{7} \mathrm{~F}_{0}$ and the first excited state ${ }^{7} \mathrm{~F}_{1}$ overlap. Spectra at different temperatures are thus necessary. Because of the high density of crystal-field levels, the Russell-Saunders coupling scheme cannot give an adequate description of the free-ion levels. Affixing a ${ }^{2 S+1} L_{J}$ label to a transition is not possible without ambiguity. Often, the Russell-Saunders notation of the wave function component with the largest coefficient is chosen as the
label, but this is a difficult task in the presence of several components with nearly equal coefficients.

In YGG: Eu^{3+}, not only do the ${ }^{5} \mathrm{D}_{4}$ and ${ }^{5} \mathrm{~L}_{9}$ manifolds overlap energetically, but their wave functions are mixed too. If there was the choice between assigning a level to the ${ }^{5} \mathrm{D}_{4}$ or to the ${ }^{5} \mathrm{~L}_{9}$ manifold, the assignment to ${ }^{5} \mathrm{D}_{4}$ was preferred because these transitions are more likely to occur than transitions to ${ }^{5} \mathrm{~L}_{9}$ (with respect to the selection rules for induced electric dipole transitions). These transitions are found between 27450 and $27700 \mathrm{~cm}^{-1}$ (figure 7). Between 27880 and $28670 \mathrm{~cm}^{-1}$, four very weak crystal-field transitions are observed and these can be assigned to the ${ }^{5} \mathrm{~L}_{10} \leftarrow{ }^{7} \mathrm{~F}_{0}$ transition. The ${ }^{5} \mathrm{~L}_{10} \leftarrow{ }^{7} \mathrm{~F}_{0}$ is only found for Eu^{3+} systems with a strong crystal-field interaction, which results in a strong J-mixing.

A high density of states is observed for the transitions to the ${ }^{5} \mathrm{H}_{J}$ multiplets $(J=3$, $4,5,6,7$): 55 crystal-field levels are calculated inside a spectral region between 30700 and $32000 \mathrm{~cm}^{-1}$. One can expect thus a strong violation of the Russell-Saunders coupling scheme and difficulties in affixing a ${ }^{2 S+1} L_{J}$ label to the transitions. 15 crystal-field levels are detected experimentally. Assignment can be made only after a detailed energy level calculation. Above $32000 \mathrm{~cm}^{-1}$, no intraconfigurational $4 \mathrm{f}-4 \mathrm{f}$ transitions of Eu^{3+} could be detected, because of a strong absorption by the garnet host matrix. The transitions are summarized in table 1.

4. Energy level calculations

The total Hamiltonian can be written as a free-ion part and a crystal-field part:

$$
\begin{equation*}
H=H_{\text {free ion }}+H_{\text {crystal field }} . \tag{1}
\end{equation*}
$$

The free-ion Hamiltonian is characterized by a set of three electron repulsion parameters (F^{2}, F^{4}, F^{6}), the spin-orbit coupling constant $\zeta_{4 f}$, the Trees configuration interaction parameters (α, β, γ), the three-body configuration interaction parameters $\left(T^{2}, T^{3}, T^{4}, T^{6}, T^{7}, T^{8}\right.$) and parameters which describe magnetic interactions $\left(M^{0}, M^{2}, M^{4}, P^{2}, P^{4}, P^{6}\right)$. A further parameter $E_{\text {ave }}$ takes the kinetic energy of the electrons and their interactions with the nucleus into account. It shifts only the barycentre of the whole 4 f configuration, so one can write [6]

$$
\begin{align*}
& H_{\text {free ion }}=E_{\text {ave }}+\sum_{k} F^{k} f_{k}+\zeta_{4 f} A_{\text {so }}+\alpha L(L+1)+\beta G\left(\mathrm{G}_{2}\right) \\
& \quad+\gamma G\left(\mathrm{R}_{7}\right)+\sum_{i} T^{i} t_{i}+\sum_{k} P^{k} p_{k}+\sum_{l} M^{l} m_{l} \tag{2}\\
& i=2,3,4,6,7,8 \quad k=2,4,6 \quad l=0,2,4 .
\end{align*}
$$

f_{k} and $A_{s o}$ represent the angular part of the electrostatic and spin-orbit interaction respectively. L is the total orbital angular momentum. $G\left(\mathrm{G}_{2}\right)$ and $G\left(\mathrm{R}_{7}\right)$ are the Casimir operators for the groups G_{2} and R_{7}. The t_{i} are the three-particle operators. p_{k} and m_{l} represent the operators for the magnetic corrections.

The crystal-field Hamiltonian is given by

$$
\begin{equation*}
H_{\text {crystal field }}=-e V \tag{3}
\end{equation*}
$$

where e is the elementary charge and V the crystal-field potential. For a D_{2} symmetry, the even part of the crystal-field potential is expanded as [7]

$$
\begin{align*}
V^{\text {even }}\left(\mathrm{D}_{2}\right)= & B_{0}^{2} C_{0}^{2}+B_{2}^{2}\left(C_{-2}^{2}+C_{2}^{2}\right)+B_{0}^{4} C_{0}^{4}+B_{4}^{4}\left(C_{-4}^{4}+C_{4}^{4}\right)+B_{2}^{4}\left(C_{-2}^{4}+C_{2}^{4}\right)+B_{0}^{6} C_{0}^{6} \\
& +B_{2}^{6}\left(C_{-2}^{6}+C_{2}^{6}\right)+B_{4}^{6}\left(C_{-4}^{6}+C_{4}^{6}\right)+B_{6}^{6}\left(C_{-6}^{6}+C_{6}^{6}\right) \tag{4}
\end{align*}
$$

Table 1. Transition energies $\left(\mathrm{cm}^{-1}\right)$ in the absorption spectra of $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}: \mathrm{Eu}^{3+}$. Transitions which are only detected in the spectra at ambient temperature are marked with an asterisk (*). The transitions are labelled according to the ${ }^{2 S+1} L_{J}$ Russell-Saunders term with largest coefficient in the total wave function.

No	Energy (cm^{-1})	Transition	No	Energy (cm^{-1})	Transition
1^{*}	4616	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	52^{*}	24954	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
2*	4689	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	53*	24999	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
$3 *$	4760	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	54*	25029	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
4*	4852	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	55*	25066	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
5*	4881	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	56	25206	${ }^{5} \mathrm{~L}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$
$6 *$	4960	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	57	25239	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
7	5001	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	58	25251	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
8	5017	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	59	25302	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
9	5028	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	60	25338	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
10	5035	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	61^{*}	25599	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
11	5076	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	62*	25644	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
12	5103	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	63	25694	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
13	5224	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	64	25703	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
14	5256	${ }^{7} \mathrm{~F}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	65	25731	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
15*	16406	${ }^{5} \mathrm{D}_{0} \leftarrow{ }^{7} \mathrm{~F}_{2}$	66	25742	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
16*	16820	${ }^{5} \mathrm{D}_{0} \leftarrow{ }^{7} \mathrm{~F}_{1}$	67*	25800	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
17*	16867	${ }^{5} \mathrm{D}_{0} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	68*	25833	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
18*	16902	${ }^{5} \mathrm{D}_{0} \leftarrow{ }^{7} \mathrm{~F}_{1}$	69*	25887	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
19*	18567	${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{1}$	70^{*}	25907	${ }^{5} \mathrm{~L}_{7} \leftarrow{ }^{7} \mathrm{~F}_{1}$
20^{*}	18627	${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{1}$	71	25980	${ }^{5} \mathrm{G}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
21*	18611	${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{1}$	72	26023	${ }^{5} \mathrm{G}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
22	18954	${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{0}$	73*	26074	${ }^{5} \mathrm{G}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
23	18971	${ }^{5} \mathrm{D}_{1} \leftarrow{ }^{7} \mathrm{~F}_{0}$	$74 *$	26105	${ }^{5} \mathrm{G}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
$24 *$	21037	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	75	26136	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
25*	21061	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	76	26191	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
26*	21082	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	77	26269	${ }^{5} \mathrm{G}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
27*	21107	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	78	26296	${ }^{5} \mathrm{G}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
28*	21143	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	79	26314	${ }^{5} \mathrm{G}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
29	21362	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	80	26340	${ }^{5} \mathrm{~L}_{7} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
30	21448	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	81	26387	${ }^{5} \mathrm{G}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
31	21471	${ }^{5} \mathrm{D}_{2} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	82	26478	${ }^{5} \mathrm{~L}_{8} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
32*	23883	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	83	26491	${ }^{5} \mathrm{~L}_{8} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
33*	23828	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	84	26523	${ }^{5} \mathrm{G}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
34*	23843	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	85	26631	${ }^{5} \mathrm{G}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
35*	23873	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	86	26664	${ }^{5} \mathrm{G}_{5} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
36*	23908	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	87	26677	${ }^{5} \mathrm{G}_{5} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
37*	23924	${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{1}$	88	27144	${ }^{5} \mathrm{~L}_{8} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
38*	23953	${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{1}$	89	27158	${ }^{5} \mathrm{G}_{8} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
39	24214	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	90*	27188	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
40	24230	${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	91*	27228	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$
41	24243	${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	92	27263	${ }^{5} \mathrm{~L}_{8} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
42	24284	${ }^{5} \mathrm{D}_{3} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	93	27492	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
43	24295	${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	94	27506	${ }^{5} \mathrm{~L} 9 \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
44	24300	${ }^{5} \mathrm{D}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	95	27516	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
45*	24342	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	96	27560	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
46*	24392	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	97	27571	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
47*	24411	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{1}$	98	27596	${ }^{5} \mathrm{D}_{4} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
48	24643	${ }^{5} \mathrm{~L}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$	99	28417	${ }^{5} \mathrm{~L}_{10} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
49	24693	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	100	28482	${ }^{5} \mathrm{~L}_{10} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
50	24710	${ }^{5} \mathrm{~L}_{6} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$	101	28614	${ }^{5} \mathrm{~L}_{10} \leftarrow \leftarrow^{7} \mathrm{~F}_{0}$
51*	24912	${ }^{5} \mathrm{~L}_{6} \leftarrow{ }^{7} \mathrm{~F}_{1}$	102	28694	${ }^{5} \mathrm{~L}_{10} \leftarrow{ }^{7} \mathrm{~F}_{0}$

Table 1. (Continued)

No	Energy $\left(\mathrm{cm}^{-1}\right)$	Transition	No	Energy $\left(\mathrm{cm}^{-1}\right)$	Transition
103	30760	${ }^{5} \mathrm{H}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	111	31273	${ }^{5} \mathrm{H}_{4} \leftarrow{ }^{7} \mathrm{~F}_{0}$
104	30810	${ }^{5} \mathrm{H}_{7} \leftarrow{ }^{7} \mathrm{~F}_{0}$	112	31294	${ }^{5} \mathrm{H}_{4} \leftarrow{ }^{7} \mathrm{~F}_{0}$
105	30967	${ }^{5} \mathrm{H}_{4} \leftarrow{ }^{7} \mathrm{~F}_{0}$	113	31387	${ }^{5} \mathrm{H}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$
106	30987	${ }^{5} \mathrm{H}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	114	31460	${ }^{5} \mathrm{H}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$
107	31014	${ }^{5} \mathrm{H}_{3} \leftarrow{ }^{7} \mathrm{~F}_{0}$	115	31594	${ }^{5} \mathrm{H}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$
108	31064	${ }^{5} \mathrm{H}_{7} \leftarrow{ }^{7} \mathrm{~F}_{0}$	116	31632	${ }^{5} \mathrm{H}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$
109	31213	${ }^{5} \mathrm{H}_{4} \leftarrow{ }^{7} \mathrm{~F}_{0}$	117	31638	${ }^{5} \mathrm{H}_{6} \leftarrow{ }^{7} \mathrm{~F}_{0}$
110	31234	${ }^{5} \mathrm{H}_{4} \leftarrow{ }^{7} \mathrm{~F}_{0}$			

Figure 7. Absorption spectra of the transitions to ${ }^{5} \mathrm{D}_{4},{ }^{5} \mathrm{~L}_{9}$ and ${ }^{5} \mathrm{~L}_{8}$ in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ at 293 and at 77 K .

The C_{q}^{k} are spherical tensor operators of rank k, with components q. The B_{q}^{k} are the crystalfield parameters. The crystal-field parametrization of the garnet systems is more complicated than the parametrization of other systems, because of the six non-equivalent D_{2} sites (see the introduction). Three choices of the z-axis are possible in a D_{2} symmetry. For each of the three choices, one has two possible orientations, which only affect the signs of the $q= \pm 2$ and $q= \pm 4$ components. Six equivalent sets of crystal-field parameters can be defined. These sets may appear completely different, but they give an identical crystal-field splitting. The relations between the equivalent sets of crystal-field parameters are given by Morrison and Leavitt [2]. We have chosen arbitrarily the set 3 orientation of Morrison and Leavitt for our crystal-field parametrization.

Table 2. Optimized free-ion and crystal-field parameters $\left(\mathrm{cm}^{-1}\right)$ for Eu^{3+} in $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}$ (D_{2} symmetry). The errors on the parameters are given in parentheses. Parameters which were constrained during the fitting produce are placed in square brackets. $\sigma=14.8 \mathrm{~cm}^{-1}$.

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$	Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
$E_{\text {ave }}$	$63669(17)$	M^{0}	$2.594(0.084)$
F^{2}	$82347(57)$	M^{2}	$\left[0.56 M^{0}\right]$
F^{4}	$59844(69)$	M^{4}	$\left[0.38 M^{0}\right]$
F^{6}	$42359(43)$	P^{2}	$[303]$
α	$19.088(0.723)$	P^{4}	$\left[0.75 P^{2}\right]$
β	$-612(9)$	P^{6}	$\left[0.50 P^{2}\right]$
γ	$1456(7)$	B_{0}^{2}	$-40(27)$
T^{2}	$416(5)$	B_{2}^{2}	$153(23)$
T^{3}	$[40]$	B_{0}^{4}	$-1990(40)$
T^{4}	$[40]$	B_{2}^{4}	$230(42)$
T^{6}	$[-330]$	B_{4}^{4}	$1124(31)$
T^{7}	$[380]$	B_{0}^{6}	$1054(60)$
T^{8}	$[370]$	B_{2}^{6}	$-192(41)$
$\zeta_{4 f}$	$1333.78(1.81)$	B_{4}^{6}	$1459(44)$
		B_{6}^{6}	$-248(44)$

The parameter set is determined by optimizing a starting set. This is done by minimizing the squares of the differences between the experimental and calculated crystal-field levels. The ${ }^{7} \mathrm{~F}_{J}$ levels $(J=2-5)$ are taken from the article by Koningstein [3]. The parameters $T^{3}, T^{4}, T^{6}, T^{7}, T^{8}, P^{2}, P^{4}$ and P^{6} were constrained during the fitting procedure. The M^{l} and P^{k} parameters are in the pseudo-relativistic Hartree-Fock ratios $M^{2} / M^{0}=0.56$, $M^{4} / M^{0}=0.38, P^{4} / P^{2}=0.75$ and $P^{6} / P^{2}=0.50$ [8]. The r.m.s. value (σ-value) of the last fit was $14.8 \mathrm{~cm}^{-1}$. The final parameter set can be found in table 2 . In table 3 , the experimental and calculated crystal-field levels are given.

5. Discussion and conclusions

The agreement between calculated and experimental energy levels is good. It was however necessary to take J-mixing into account. The J-mixing is enhanced by the strong crystal field in the garnet host, in comparison with other single-crystal hosts. Because of the J mixing, several transitions starting from the ${ }^{7} \mathrm{~F}_{0}$ ground state and not obeying the selection rule $\Delta J=2,4,6$ for induced electric dipole transitions are observed. Examples are the transitions from ${ }^{7} \mathrm{~F}_{0}$ to ${ }^{5} \mathrm{D}_{3},{ }^{5} \mathrm{~L}_{8},{ }^{5} \mathrm{~L}_{9}$ and ${ }^{5} \mathrm{~L}_{10}$.

The absorption spectra of $\mathrm{YGG}: \mathrm{Eu}^{3+}$ and $\mathrm{YAG}: \mathrm{Eu}^{3+}$ [9] are very similar, although it should be remarked that the ultraviolet cut-off is at a lower energy for YGG than for YAG. This similarity can be expected, because of the structural relationship between the two matrices (both have the garnet structure). The same crystal-field transitions and the same free-ion ${ }^{2 S+1} L_{J}$ manifolds are observed. The crystal-field strengths in the two host crystals are not identical however. The magnitude of the crystal-field splitting of the $J=1$ levels is greatly reduced in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ compared to the magnitude of the crystal-field splitting in YAG:Eu ${ }^{3+}$. The total crystal-field splitting of the ${ }^{7} \mathrm{~F}_{1}$ level is $172 \mathrm{~cm}^{-1}$ in $\mathrm{YAG}: \mathrm{Eu}^{3+}$, but only $82 \mathrm{~cm}^{-1}$ in YGG:Eu ${ }^{3+}$. For ${ }^{5} \mathrm{D}_{1}$, the splitting is $39 \mathrm{~cm}^{-1}$ in $\mathrm{YAG}: \mathrm{Eu}^{3+}$ and $16 \mathrm{~cm}^{-1}$ in YGG: Eu^{3+}. The values of the $k=2$ crystal-field parameters are therefore smaller in

Table 3. Experimental and calculated energy levels $\left(\mathrm{cm}^{-1}\right)$ of Eu^{3+} in $\mathrm{Y}_{3} \mathrm{Ga}_{5} \mathrm{O}_{12}$ (D_{2} symmetry).

${ }^{2 S+1} L_{J}$	μ	$E_{\text {exp }}\left(\mathrm{cm}^{-1}\right)$	$E_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$	$E_{\text {exp }}-E_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$
${ }^{7} \mathrm{~F}_{0}$	0	0	5	-5
${ }^{7} \mathrm{~F}_{1}$	± 1	308	317	-9
	0	343	355	-12
	± 1	390	409	-19
${ }^{7} \mathrm{~F}_{2}$	± 1	-	811	-
	± 1	-	820	-
	0	829	826	+3
	0	-	1318	-
	0	-	1326	-
${ }^{7} \mathrm{~F}_{3}$	± 1	-	1828	-
	0	1882	1867	+15
	± 1	1896	1891	$+5$
	± 1	1950	1963	-7
	0	1982	1969	$+13$
	± 1	2004	1982	+22
	0	-	2184	-
${ }^{7} \mathrm{~F}_{4}$	0	-	2385	-
	± 1	2851	2839	$+12$
	0	-	2869	-
	± 1	2935	2914	$+15$
	± 1	3073	3089	-16
	± 1	3083	3096	-13
	0	3108	3109	-1
	0	-	3162	-
	0	3202	3201	+ 1
${ }^{7} \mathrm{~F}_{5}$	± 1	3758	3762	-4
	0	3788	3798	-10
	± 1	-	3807	-
	± 1	3984	3966	+22
	± 1	4026	4026	0
	0	4042	4034	+8
	0	4150	4153	-3
	± 1	-	4184	-
	± 1	-	4203	-
	0	-	4219	-
	0	-	4241	-
${ }^{7} \mathrm{~F}_{6}$	0	5001	4979	+22
	± 1	5017	5020	-3
	0	5028	5039	-11
	± 1	-	5046	-
	± 1	-	5055	
	0	5076	5091	-15
	± 1	5103	5102	+1
	0	5224	5255	-31
	0	-	5255	-
	± 1	5231	5263	-32
	0	-	5270	-
	0	-	5273	-
	± 1	-	5279	-
${ }^{5} \mathrm{D}_{0}$	0	17210	17201	$+9$
${ }^{5} \mathrm{D}_{1}$	± 1	18954	18941	+9
	0	18954	18951	+ 3
	± 1	18970	18971	-1
${ }^{5} \mathrm{D}_{2}$	0	21344	21371	-27
	0	21362	21374	-12
	± 1	21451	21442	+9
	0	-	21451	-
	± 1	21471	21459	$+12$

Table 3. (Continued)

${ }^{2 S+1} L_{J}$	μ	$E_{\text {exp }}\left(\mathrm{cm}^{-1}\right)$	$E_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$	$E_{\text {exp }}-E_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$
${ }^{5} \mathrm{D}_{3}$	± 1	24214	24228	-14
	0	24231	24242	-11
	± 1	24244	24262	-18
	0	24284	24277	+ 7
	± 1	24296	24283	$+13$
	± 1	-	24284	-
	0	24300	24297	+3
${ }^{5} \mathrm{~L}_{6}$	0	24643	24651	-8
	0	-	24665	-
	± 1	24693	24693	0
	± 1	-	24694	-
	0	24710	24707	+3
	0	-	24718	-
	± 1	25206	25192	+14
	0	-	25195	-
	± 1	25239	25238	+1
	± 1	25251	25265	-14
	0	25302	25281	+21
	± 1	25338	25315	$+23$
	0	25374	25379	-5
(a) ${ }^{\text {(a) }}$				
${ }^{5} \mathrm{D}_{4},{ }^{5} \mathrm{~L} 9$	± 1	27492	27487	$+5$
	0	27506	27509	+ 3
	± 1	-	27522	-
	0	27516	27533	-17
	0	-	27538	$+10$
	± 1	-	27547	-
	± 1	27560	27553	+ 7
	0	-	27565	-
	0	-	27565	-
	± 1	-	27567	-
	± 1	27571	27579	-8
	0	27596	27592	+4
	± 1	-	27633	-
	0	-	27642	-
(b)				
${ }^{5} \mathrm{H}_{3,4,5,6,7}$	0	30760	30718	+ 42
	± 1	30810	30831	-21
	± 1	30967	30984	-17
	± 1	30987	30990	-3
	0	31014	31001	$+13$
	0	31064	31036	+28
	0	31213	31216	-3
	± 1	31234	31249	-15
	± 1	31273	31266	$+7$
	0	31294	31299	-5
	± 1	31387	31403	-16
	± 1	31460	31453	$+7$
	± 1	31594	31599	-5
	0	31632	31614	$+18$
	0	31638	31645	-7

[^0]YGG:Eu ${ }^{3+}\left(B_{0}^{2}=-40 \mathrm{~cm}^{-1}, B_{2}^{2}=153 \mathrm{~cm}^{-1}\right)$ than in YAG:Eu ${ }^{3+}\left(B_{0}^{2}=-263 \mathrm{~cm}^{-1}\right.$, $B_{2}^{2}=284 \mathrm{~cm}^{-1}$). The smaller value for the parameter B_{0}^{2} can be rationalized in terms of a smaller deviation from a cubic coordination polyhedron in YGG than in YAG. The difference in the splitting is less pronounced in the other ${ }^{2 S+1} L_{J}$ manifolds. Therefore, the $k=4$ and $k=6$ parameters are nearly the same in the two matrices (compare with the values of [9]). The total crystal-field splitting of ${ }^{5} \mathrm{D}_{2}$ is $121 \mathrm{~cm}^{-1}$ in $\mathrm{YAG}: E u^{3+}$ and $127 \mathrm{~cm}^{-1}$ in YGG:Eu ${ }^{3+}$. The splitting of the ${ }^{5} \mathrm{~L}_{6}$ manifold is $768 \mathrm{~cm}^{-1}$ in $\mathrm{YAG}: \mathrm{Eu}^{3+}$ and $731 \mathrm{~cm}^{-1}$ in YGG:Eu ${ }^{3+}$. The crystal-field levels of ${ }^{5} \mathrm{~L}_{6}$ are in $\mathrm{YGG}: \mathrm{Eu}^{3+}$ also divided into two subgroups, just as in YAG: Eu^{3+}.

Acknowledgments

KB is a postdoctoral fellow of the Belgian National Fund for Scientific Research (NFWO). Financial support from the Geconcerteerde Onderzoeksakties (Konventie No 87 93-110) and from the IIKW (4.0007.94 and G.0124.95) is gratefully acknowledged. We wish to thank G Blasse (University of Utrecht, The Netherlands) for providing us with the YGG:Eu ${ }^{3+}$ single crystal.

References

[1] Weber M J 1979 Rare-earth lasers Handbook on the Physics and Chemistry of Rare-earths vol 4, ed K A Gschneidner Jr and L Eyring (Amsterdam: North-Holland) ch 35, p 275
[2] Morrison C A and Leavitt R P 1982 Spectroscopic properties of triply ionized lanthanides in transparent host crystals Handbook on the Physics and Chemistry of Rare-earths vol 5, ed K A Gschneidner Jr and L Eyring (Amsterdam: North-Holland) ch 46, p 461
[3] Koningstein J A 1965 J. Chem. Phys. 423195
[4] Dillon J F Jr and Walker L R 1961 Phys. Rev. 1241401
[5] Binnemans K and Görller-Walrand C 1995 Chem. Phys. Lett. 235163
[6] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 903443
[7] Wybourne B G 1965 Spectroscopic Properties of Rare-earths (New York: Wiley)
[8] Judd B R and Crosswhite H 1984 J. Opt. Soc. Am. B 1255
[9] Binnemans K and Görller-Walrand C 1996 J. Chem. Soc.: Faraday Trans. 922487

[^0]: ${ }^{(a)}$ Between 25690 and $27370 \mathrm{~cm}^{-1}$, 77 crystal-field levels of the multiplets ${ }^{5} \mathrm{~L}_{7},{ }^{5} \mathrm{~L}_{8},{ }^{5} \mathrm{G}_{2}$, ${ }^{5} \mathrm{G}_{3},{ }^{5} \mathrm{G}_{4},{ }^{5} \mathrm{G}_{5}$ and ${ }^{5} \mathrm{G}_{6}$ are calculated. 22 are observed in the spectra.
 (b) Between 27880 and $28670 \mathrm{~cm}^{-1}$, 35 crystal-field levels belonging to ${ }^{5} \mathrm{~L} 9$ and ${ }^{5} \mathrm{~L}_{10}$ are calculated. Only four of them are found in the spectra.

